长方体ABCD-A1BlClD1中,AB=2,AD=1,AA1=,E、F分别是AB、CD的中点(1)求证:DlE⊥平面ABlF;(2)求直线AB与平面ABlF所成的角(3)求二面角A-B1F-B的大小。
设A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},求AB.
设全集为R,,,求及
.已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2. (1)求和抛物线C的方程; (2)若P为抛物线C上的动点,求的最小值; (3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
设. (1) 当时,求的单调区间. (2)当时,讨论的极值点个数。
.如图(1),在直角梯形ABCD中,,,,,,以DE为轴旋转至图(2)位置,F为DC的中点. (1)求证:平面 (2)若平面平面,且BC垂直于AE 求①二面角的大小. ②直线BF与平面ABED所成角的正弦值