已知椭圆的左右顶点分别为,离心率.(1)求椭圆的方程;(2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
选修4—4;坐标系与参数方程. 已知直线:为参数), 曲线(为参数). (Ⅰ)设与相交于两点,求; (Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
选修4-1:几何证明选讲 如图,是圆的直径,是弦,的平分线交圆于点,,交的延长线于点,交于点。 (1)求证:是圆的切线; (2)若,求的值。
设函数。 (1)求函数的极大值; (2)若时,恒有成立(其中是函数的导函数),试确定实数的取值范围。
已知椭圆的长轴长为4,离心率为,分别为其左右焦点.一动圆过点,且与直线相切. (Ⅰ)(ⅰ)求椭圆的方程; (ⅱ)求动圆圆心的轨迹方程; (Ⅱ) 在曲线上有两点,椭圆上有两点,满足与共线,与共线,且,求四边形面积的最小值.
如图,三棱锥中,侧面底面, ,且,. (Ⅰ)求证:平面; (Ⅱ)若为侧棱的中点,求直线与底面所成角的正弦值.