(满分12分)如图,在正方体中,E、F、G分别为、、的中点,O为与的交点,(1)证明:面(2)求直线与平面所成角的正弦值.
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1. (1)证明PA⊥平面ABCD; (2)求以AC为棱,EAC与DAC为面的二面角的大小; (3)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.
在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (Ⅰ)证明:AC⊥SB; (Ⅱ)求二面角N—CM—B的大小; (Ⅲ)求点B到平面CMN的距离.
在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。请你类比写出在立体几何中,有关四面体的相似性质,并证之。
已知在四面体ABCD中,= a,= b,= c,G∈平面ABC.则G为△ABC的重心的充分必要条件是(a+b+c);
如图,已知边长为的正三角形中,、分别为和的中点,面,且,设平面过且与平行。 求与平面间的距离?