已知在四面体ABCD中,= a,= b,= c,G∈平面ABC.则G为△ABC的重心的充分必要条件是(a+b+c);
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在直线与海岸线,的夹角为60°(海岸线看作直线),跑道上距离海岸线最近的点B到海岸线的距离BC=4,D为海岸线l上的一点.设CD=xkm(x>),点D对跑道AB的视角为. (1)将tan表示为x的函数: (2)求点D的位置,使得取得最大值.
如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2 (1)求证:CF∥面ABE; (2)求证:面ABE⊥平面BDE: (3)求三棱锥F—ABE的体积。
记数列的前n项和,且,且成公比不等于1的等比数列。 (1)求c的值; (2)设,求数列{}的前n项和Tn.
若关于的方程有实根 (Ⅰ)求实数的取值集合 (Ⅱ)若对于,不等式恒成立,求的取值范围
已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,). (Ⅰ)求直线和曲线C的普通方程; (Ⅱ)求点到直线的距离之和.