已知a=,且∈.(1)求的最值;(2)若|ka+b|=|a-kb| (k∈R),求k的取值范围.
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,,现将梯形沿CB、DA折起,使且,得一简单组合体如图2示,已知分别为的中点. 图1 图2(1)求证:平面; (2)求证: ;(3)当多长时,平面与平面所成的锐二面角为?
某市举行一次数学新课程骨干培训活动,共邀请15名使用不同版本教材的数学教师,具体情况数据如下表所示:
现从这15名教师中随机选出2名,则2人恰好是教不同版本的女教师的概率是.且.(1)求实数,的值(2)培训活动现随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
已知向量,(1)若,求 (2)设,若,求的值.
如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成的角的余弦值(2)求二面角的余弦值(3)点到面的距离
先后2次抛掷一枚骰子,将得到的点数分别记为a, b.(1)求直线ax+by+5=0与圆 相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.