某农搜索场计划种植某种新作物 , 为此对这种作物的两个品种 ( 分别称为品种甲和品种乙 ) 进行田间试验 。 选取两大块地 , 每大块地分成 n 小块地 , 在总共 2 n 小块地中 , 随机选 n 小块地种品种甲 , 另外 n 小块地种植品种乙 。 ( 1 ) 假设 n = 4 , 在第一大块地中 , 种植品种甲的小块地的数目记为 X , 求 X 的分布列和数学期望 ; ( 2 ) 试验时每大块地分成 8 小块 , 即 n = 8 , 试验结束后得到品种甲和品种乙在个小块地上的每公顷产量 ( 单位 : k g / h m 2 ) 如下表 : 品种甲 403 397 390 404 388 400 412 406 品种乙 419 403 412 418 408 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差 ; 根据试验结果 , 你认为应该种植哪一品种 ?
已知点,,动点的轨迹曲线满足,,过点的直线交曲线于、两点. (1)求的值,并写出曲线的方程; (2)求△面积的最大值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且 (1)求三棱锥D-ABC的表面积; (2)求证AC⊥平面DEF; (3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
已知 且;:集合,且.若∨为真命题,∧为假命题,求实数的取值范围.
已知的角A、B、C所对的边分别是, 设向量,, (Ⅰ)若∥,求证:为等腰三角形; (Ⅱ)若⊥,边长,,求的面积.