某农搜索场计划种植某种新作物 , 为此对这种作物的两个品种 ( 分别称为品种甲和品种乙 ) 进行田间试验 。 选取两大块地 , 每大块地分成 n 小块地 , 在总共 2 n 小块地中 , 随机选 n 小块地种品种甲 , 另外 n 小块地种植品种乙 。 ( 1 ) 假设 n = 4 , 在第一大块地中 , 种植品种甲的小块地的数目记为 X , 求 X 的分布列和数学期望 ; ( 2 ) 试验时每大块地分成 8 小块 , 即 n = 8 , 试验结束后得到品种甲和品种乙在个小块地上的每公顷产量 ( 单位 : k g / h m 2 ) 如下表 : 品种甲 403 397 390 404 388 400 412 406 品种乙 419 403 412 418 408 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差 ; 根据试验结果 , 你认为应该种植哪一品种 ?
已知函数="" ,求,的值.
22、 定义F(x,y)=yx(x>0,y>0). (1)设函数f(n)=(n∈N*) , 求函数f(n)的最小值; (2)设g(x)=F(x,2),正项数列{an}满足;a1=3,g(an+1)=,求数列{an}的通项公式,并求所有可能乘积aiaj(1≤i≤j≤n)的和.
(本小题满分12分) 已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。 (1)求动点P的轨迹方程,并讨论它表示什么曲线; (2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N。若点N恰好落在以线段AB为直径的圆上,求θ的值。
已知 ①若求 的单调区间 ②若对任意,有恒成立,求的取值范围? ③ 若有两相异实根,求的取值范围?
本题满分12分) 2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮(含义:“北京欢迎你”)。现有8个相同的盒子,每个盒子中有一只福娃,每种福娃的数量如下表:
从中随机地选取5只。 (1)求选取的5只恰好组成完整“奥运会吉祥物”的概率; (2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;……。设ξ表示所得的分数,求ξ的分布列和期望值。(结果保留一位小数)