如图,已知斜三棱柱 的底面是直角三角形, ,侧棱与底面所成的角为 ,点 在底面上的射影 落在 上. (1)若点 恰为 的中点,且 ,求 的值. (2)若 ,且当 时,求二面角 的大小.
已知f(x)=ex-ax-1. (1)求f(x)的单调增区间; (2)若f(x)在定义域R内单调递增,求a的取值范围.
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x). (1)证明:当x≥0时,f(x)≤(x+c)2; (2)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立. (1)求a,c,d的值; (2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
已知函数f(x)=. (1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值; (2)对任意x>0,f(x)≤t恒成立,求t的取值范围.
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).