某重点高校数学教育专业的三位毕业生甲,乙,丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)签约人数X的分布列及数学期望。
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线(Ⅰ)求曲线C的方程;(Ⅱ)直线交曲线于不同的两点,是坐标原点,求面积的最大值.
(本小题满分12分)已知在四棱锥中,底面是菱形,且,侧面是正三角形,且面面,为的中点. (Ⅰ)证明:∥面;(Ⅱ)求面与面所成二面角的余弦值.
(本小题满分12分)为了参加中央电视台、国家语言文字工作委员会联合主办的《中国汉字听写大会》节目,某老师要求参赛学生从星期一到星期四每天学习3个汉字以及正确注释,每周五对一周内所学汉字随机抽取若干个进行检测(一周所学的汉字每个被抽到的可能性相同). (Ⅰ)老师随机抽了4个汉字进行检测,求至少有3个是后两天学习过的汉字的概率; (Ⅱ)某学生对后两天所学过的汉字每个能默写对的概率为,对前两天所学过的汉字每个能默写对的概率为.若老师从后三天所学汉字中各抽取一个进行检测,求该学生能默写对的汉字的个数ξ的分布列和期望.
(本小题满分12分)已知.(Ⅰ)求的最小正周期和对称轴方程;(Ⅱ)在中,角所对应的边分别为,若有,,,求的面积.
选修4-5:不等式选讲设函数.(Ⅰ)当时,若不等式的解集为或,求的值;(Ⅱ)若对恒成立,求的取值范围.