将一个半径适当的小球放入如图所示的容器最上方的入口处, 小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(Ⅰ)求小球落入A袋中的概率P(A);(Ⅱ)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.
某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
已知在数列{}中,(1)求证:数列{}是等比数列,并求出数列{}的通项公式;(2)设数列{}的前竹项和为Sn,求Sn.
已知函数(1)当a=1时,解不等式(2)若存在成立,求a的取值范围.
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数)(1)写出直线l和曲线C的普通方程;(2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长.