如图,在三棱柱中,,顶点在底面上的射影恰为点,且.(Ⅰ)证明:平面平面; (Ⅱ)求棱与所成的角的大小;(Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.
已知函数.(1)求函数的定义域和最小正周期;(2)若,,求的值.
已知函数,(其中为常数).(1)如果函数和有相同的极值点,求的值;(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.(3)记函数,若函数有5个不同的零点,求实数的取值范围.
(1)已知定点、,动点N满足(O为坐标原点),,,,求点P的轨迹方程. (2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,(ⅰ)设直线的斜率分别为、,求证:为定值;(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.
已知数列中,.(1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
如图,已知四棱锥中,平面,底面是直角梯形,且.(1)求证:平面;(2)求证:平面;(3)若是的中点,求三棱锥的体积.