已知过抛物线 y 2 = 2 p x p > 0 的焦点,斜率为 2 2 的直线交抛物线于 A x 1 , y 2 , B x 2 , y 2 , x 1 < x 2 两点,且 A B = 9 . (1)求该抛物线的方程; (2) O 为坐标原点, C 为抛物线上一点,若 O C ⇀ = O A ⇀ + λ O B ⇀ ,求 λ 的值.
已知函数f(x)=-x3-ax2+b2x+1(a、b∈R). (1)若a=1,b=1,求f(x)的极值和单调区间; (2)已知x1,x2为f(x)的极值点,且|f(x1)-f(x2)|=|x1-x2|,若当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒小于m,求m的取值范围
设a为实常数,函数f(x)=-x3+ax2-4. (1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求函数f(x)的单调区间; (2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值. (1)求a、b、c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值.
已知函数f(x)=x3-x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点. (1)若存在x<0,使得f′(x)=-9,求a的最大值; (2)当a>0时,求函数f(x)的极值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f′=. (1)求f(x)的解析式; (2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围