某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共 5 杯,其颜色完全相同,并且其中 3 杯为 A 饮料,另外 2 杯为 B 饮料,公司要求此员工一一品尝后,从 5 杯饮料中选出 3 杯 A 饮料.若该员工 3 杯都选对,则评为优秀;若3杯选对 2 杯,则评为良好;否则评为及格.假设此人对A和B两种饮料没有鉴别能力. (1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.
(本小题满分10分)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,(Ⅰ)求的值; (Ⅱ)设的值
(本小题满分10分)已知数列为等差数列,且 (1)求数列的通项公式;(2)求数列的前n项和
(本小题满分14分)己知函数,(Ⅰ)证明函数是R上的增函数;(Ⅱ)求函数的值域.(Ⅲ)令.判定函数的奇偶性,并证明
(本小题13分)测量地震级别的里氏是地震强度(即地震释放的能量)的常用对数值,显然级别越高,地震的强度也越高。如日本1923年地震为8.9级,旧金山1906年地震是8.3级,1989年地震为7.1级。试计算一下日本1923年地震强度是8.3级的几倍?是7.1级的几倍?(取lg2=0.3)
已知函数在上是减函数,在上是增函数,且两个零点满足,求二次函数的解析式。