在如图所示的几何体中,四边形 A B C D 为平行四边形, ∠ A C B = 90 ° , E A ⊥ 平面 A B C D , E F ∥ A B , F G ∥ B C , E G ∥ A C , A B = 2 E F .
(Ⅰ)若 M 是线段 A D 的中点,求证: G M ∥ 平面 A B F E ; (Ⅱ)若 A C = B C = 2 A E ,求二面角 A - B F - C 的大小.
(本小题满分14分)已知函数,其中是的导函数。 (1)若在处的导数为4,求实数的值;(2)对满足的一切的值,都有,求实数的取值范围;(3)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点
设定义在[0,2]上的函数满足下列条件:①对于,总有,且,;②对于,若,则.证明:(1)();(2)时,.
在数列中,,是给定的非零整数,.(1)若,,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.
设向量为直角坐标平面内x轴,y轴正方向上的单位向量.若向量,,且.(1)求满足上述条件的点的轨迹方程;(2)设,问是否存在常数,使得恒成立?证明你的结论.
如图,斜三棱柱的所有棱长均为,侧面底面,且.(1)求异面直线与间的距离;(2)求侧面与底面所成二面角的度数.