在如图所示的几何体中,四边形 A B C D 为平行四边形, ∠ A C B = 90 ° , E A ⊥ 平面 A B C D , E F ∥ A B , F G ∥ B C , E G ∥ A C , A B = 2 E F .
(Ⅰ)若 M 是线段 A D 的中点,求证: G M ∥ 平面 A B F E ; (Ⅱ)若 A C = B C = 2 A E ,求二面角 A - B F - C 的大小.
如图,在四棱锥中,//,,,,平面平面.(1)求证:平面平面;(2)若直线与平面所成的角的正弦值为,求二面角的平面角的余弦值.
某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3, ,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
在数列中,,(1)求数列的通项;(2)若存在,使得成立,求实数的最小值.
已知函数(1)当时,求函数f(x)取得最大值和最小值时的值;(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量与向量平行,求c的值.
(本小题满分14分)已知函数.(1)求的单调区间与极大值; (2)任取两个不等的正数,且,若存在使成立,求证:;(3)已知数列满足,(n∈N+),求证:(为自然对数的底数).