(本小题满分12分)在△OAB中,,AD与BC交于点M,设=a,=b,(1)用a,b表示;(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设=p,=q,求证:=1.
(本小题满分12分).设正项数列的前项和为,满足,.(Ⅰ)求数列的通项公式;(Ⅱ)设,证明:
(本小题满分12分).如图,在直角梯形中,,,且,现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点(I) 求证: ∥平面;(Ⅱ)求证: 平面;(III) 求二面角的大小.
(本小题满分12分).在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等(I)求取出的两个球上标号为相邻整数的概率;(II)求取出的两个球上标号之和能被3整除的概率.
(本小题满分12分).已知,函数的最小正周期为( 其中为正常数,)(I)求的值和函数的递增区间;(II)在△中,若,且,求
.(本小题满分l0分)选修4—5:不等式选讲已知函数.(I)求不等式≤6的解集;(Ⅱ)若关于的不等式>恒成立,求实数的取值范围。