(本小题满分8分)(1)解含的不等式: ;(2)求函数的值域, 并写出其单调区间.
如图1,在直角梯形中,,,,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点. (1)求证:平面平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.
已知数列的前项和为,且,数列满足,且点在直线上.(1)求数列、的通项公式;(2)求数列的前项和.
已知△ABC中,A,B,C的对边分别为a,b,c,且.(1)若,求边c的大小;(2)若a=2c,求△ABC的面积.
已知函数(I)当a=1时,求函数f(x)的最小值;(II)当a≤0时,讨论函数f(x)的单调性;(III)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.
已知各项都不相等的等差数列的前6项和为60,且为和的等比中项.( I ) 求数列的通项公式;(II) 若数列满足,且,求数列的前项和.