(本小题满分12分)如图,正三角形ABC与直角三角形BCD成直二面角,且∠BCD=90°,∠CBD=30°.(1)求证:AB⊥CD;(2)求二面角D—AB—C的大小; (3)求异面直线AC和BD所成的角.
已知集合A={x|≥1,x∈R},B={x|x2-2x-m<0}.(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1<x<4},求实数m的值.
已知集合M={x|x(x-a-1)<0,x∈R},N={x|x2-2x-3≤0},若M∪N=N,求实数a的取值范围.
如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,.(1)证明:;(2)证明:;(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.
已知椭圆的左右顶点分别为,离心率.(1)求椭圆的方程;(2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
已知实数,且按某种顺序排列成等差数列.(1)求实数的值;(2)若等差数列的首项和公差都为,等比数列的首项和公比都为,数列和的前项和分别为,且,求满足条件的自然数的最大值.