(本小题满分12分)如图,正三角形ABC与直角三角形BCD成直二面角,且∠BCD=90°,∠CBD=30°.(1)求证:AB⊥CD;(2)求二面角D—AB—C的大小; (3)求异面直线AC和BD所成的角.
已知Z)是奇函数,又, 求的值。
已知函数的两个零点为,设,,且,求实数的取值范围.
在平面直角坐标系中,已知圆的圆心在第二象限,半径为且与直线相切于原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.(1)求圆的方程;(2)圆上是否存在点,使、关于直线为圆心,为椭圆右焦点)对称,若存在,请求出点的坐标;若不存在,请说明理由.
抛物线上有两个定点、分别在对称轴的上下两侧,为抛物线的焦点,并且||=2,||=5,在抛物线这段曲线上求一点,使的面积最大,并求这个最大面积.
已知F1、F2为双曲线(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的离心率.