(本小题满分12分)数列{an}中,a1=1,n≥2时,其前n项的和Sn满足Sn2=an(Sn-).(1)求Sn的表达式;(2)设bn=,求数列{bn}的前n项和Tn.
(本小题满分12分)已知F1、F2是椭圆的两个焦点,P是椭圆上任意一点.(1)若∠F1PF2=,求△F1PF2的面积;(2)求PF1·PF2的最大值.
(本小题满分12分)已知椭圆经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标。
(本小题满分12分)已知椭圆上一点M的纵坐标为2.(1)求M的横坐标;(2)求过点M且与共焦点的椭圆方程。
(本小题满分12分)已知p:对任意的实数x都有ax2+ax+1>0成立;q:关于x的方程x2-x+a=0有实数根。如果“pq”为假命题,“pq”为真命题,求实数a的取值范围。
(本小题满分10分) 是否存在实数p,使4x+p<0 是x2-x-2>0的充分条件?如果存在求出p取值范围;否则,说明理由。