(本小题满分12分)计算机考试分理论考试与上机操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”则计算机考试“合格”并颁发“合格证书”.甲、乙、丙三人在理论考试中合格的概率分别为,,;在上机操作考试中合格的概率分别为,,.所有考试是否合格相互之间没有影响.(Ⅰ)甲、乙、丙三人在同一次计算机考试中谁获得“合格证书”可能性最大?(Ⅱ)求这三人计算机考试都获得“合格证书”的概率;(Ⅲ)用表示甲、乙、丙三人在理论考核中合格人数,求的分布列和数学期望.
某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:(1)请预测旅客乘到第一班客车的概率;(2)旅客候车时间的分布列;(3)旅客候车时间的数学期望。
已知函数。(1)求的对称轴;(2)在中,已知,求。
已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆于两点,且成等差数列。(1)求椭圆的离心率;(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。
设函数,已知不论为何实数时,恒有,对于正数数列,其前项和()(1)求的值;(2)求数列的通项公式;(3)是否存在等比数列,使得对一切正整数都成立,并证明你的结论;(4)若,且数列的前项和为,比较与的大小。
如图,已知正方形的边长为1,平面,平面,为边上的动点。(1)证明:平面; (2)试探究点的位置,使平面平面。