已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆于两点,且成等差数列。(1)求椭圆的离心率;(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。
已知等差数列中,首项,公差为整数,且满足,数列满足,其前项和为. (1)求数列的通项公式; (2)若为的等比中项,求的值.
已知函数()在处取最小值. (1)求的值; (2) 在中,分别为角的对边,已知,求角.
已知数列满足:,, (Ⅰ)求的值; (Ⅱ)设,试求数列的通项公式; (Ⅲ)对于任意的正整数n,试讨论并证明与的大小关系.
已知函数. (Ⅰ)若当时,不等式恒成立,求实数的取值范围; (Ⅱ)求函数在区间上的最大值.
平面直角坐标系中,过椭圆右焦点的直线交于两点,为的中点,且的斜率为. (Ⅰ)求椭圆的方程; (Ⅱ)为上的两点,若四边形的对角线,求四边形ACBD面积的最大值.