(本题满分12分)已知椭圆的左、右焦点为,过点斜率为正数的直线交两点,且成等差数列。(Ⅰ)求的离心率;(Ⅱ)若直线y=kx(k<0)与交于C、D两点,求使四边形ABCD面积S最大时k的值。
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.(1)求的值;(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?(3)已知,求不能通过测试的概率.
已知向量,其中.(1)试判断向量与能否平行,并说明理由?(2)求函数的最小值.
(本小题满分12分)设函数(Ⅰ)若函数在其定义域内是增函数,求的取值范围;(Ⅱ)设,方程有两根 ,记.试探究值的符号,其中是的导函数.
(本小题满分12分)已知点和直线,作垂足为Q,且(Ⅰ)求点P的轨迹方程;(Ⅱ)过点C的直线与点P轨迹交于两点,,点,若的面积为,求直线的方程.
(本小题满分12分)设数列为等差数列,且,,数列的前项和为,且;,(Ⅰ)求数列,的通项公式;(Ⅱ)若,为数列的前项和. 求证:.