已知抛物线,若抛物线上存在不同两点A、B满足(1)求实数p的取值范围;(2)当p=2时,抛物线上是否存在异于A,B的点C,使得经过A,B,C三点的圆和抛物线 在点C处有相同的切线,若存在,求出点C的坐标;若不存在,请说明理由。
(本小题满分12分) 设O为坐标原点,点P的坐标 (I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率; (II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
(本小题满分12分)在(1)求角C的大小;(2)若AB边的长为,求BC边的长.
(本小题满分12分)已知函数(1)确定上的单调性;(2)设在(0,2)上有极值,求的取值范围。
(本小题满分12分)已知半圆,动圆与此半圆相切且与轴相切。(1)求动圆圆心的轨迹,并画出其轨迹图形;(2)是否存在斜率为的直线,它与(1)中所得轨迹的曲线由左到右顺次交于A、B、C、D四点,且满足。若存在,求出的方程;若不存在,说明理由。