(本小题满分12分)如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(Ⅰ)若,求的值;(Ⅱ)设函数,求的值域.
(满分12分)已知向量与互相垂直,其中. (1)求和的值; (2)求函数的值域。
(满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。 (Ⅰ)求角C的大小; (Ⅱ)求的最大值。
已知函数的两条切线PM、PN,切点分别为M、N. (I)当时,求函数的单调递增区间; (II)设|MN|=,试求函数的表达式; (III)在(II)的条件下,若对任意的正整数,在区间内总存在成立,求m的最大值.
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,. (1)求点P的坐标; (2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
已知函数的图象在点M(-1,f(-1))处的切线方程为x+2y+5=0. (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)求函数y=f(x)的单调区间.