(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会.(1)求该同学仅获得900元奖金的概率;(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率.
已知函数. (Ⅰ)当时,求证:函数在上单调递增; (Ⅱ)若函数有三个零点,求的值.
已知数列是等差数列,且满足:,;数列满足. (1)求和; (2)记数列,若的前项和为,求证.
如图,底面△为正三角形的直三棱柱中,,,是的中点,点在平面内,. (Ⅰ)求证:; (Ⅱ)求证:∥平面; (Ⅲ)求二面角的大小.
在中,分别为内角的对边,且. (Ⅰ)求角的大小; (Ⅱ)若,,求边的长.
如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且. (Ⅰ)求椭圆的方程; (Ⅱ)若过的直线与椭圆相交于两点和, 设为椭圆上一点,且满足(为坐标原点),求实数的取值范围.