投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10内的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机散一粒豆子,求豆子落在区域M上的概率.
(本小题共13分)已知圆过两点(1,-1),(-1,1),且圆心在上. (1)求圆的方程; (2)设是直线上的动点,、是圆的两条切线,、为切点,求四边形面积的最小值.
(本小题共12分)如图,四边形是矩形,平面,是上一点,平面,点,分别是,的中点. (Ⅰ)求证:平面; (Ⅱ)求证:.
(本小题共12分)已知向量,,函数. (Ⅰ)求函数的最小正周期和最大值; (Ⅱ)求函数在区间上的最大值和最小值.
已知函数 (1)若函数在上为增函数,求实数的取值范围 (2)当时,求在上的最大值和最小值 (3)求证:对任意大于1的正整数,恒成立
已知函数f(x)=,若数列,满足,,, (1)求的关系,并求数列的通项公式; (2)记, 若恒成立.求的最小值.