已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数 的取值范围.
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
(满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)已知函数 (1)判断并证明在上的单调性;(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值,并求出不动点;(3)若在上恒成立 , 求的取值范围.
(如图)已知正方体的棱长均为1,为棱上的点,为棱的中点,异面直线与所成角的大小为,求的值.
在中,、、是、、的对边,已知,,,求的面积.
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)若,求证:该数列是“封闭数列”;(2)试判断数列是否是“封闭数列”,为什么?(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.