已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N+)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn·bn+2<b.
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
如图,斜四棱柱的底面是矩形,平面⊥平面,分别为的中点.求证:(1);(2)∥平面.
已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆 的方程.
已知为实数,:点在圆的内部;:都有.(1)若为真命题,求的取值范围;(2)若为假命题,求的取值范围;(3)若“且”为假命题,且“或”为真命题,求的取值范围.
如图,设椭圆:的离心率,顶点的距离为,为坐标原点.(1)求椭圆的方程;(2)过点作两条互相垂直的射线,与椭圆分别交于两点.(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;(ⅱ)求的最小值.