已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N+)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn·bn+2<b.
(本小题满分14分)已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
已知点在以坐标轴为对称轴的椭圆上,点到两个焦点的距离分别为和,过作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆的方程。
已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,求椭圆的标准方程。
已知方程表示焦点在轴上的椭圆,求的取值范围。
求下列椭圆的焦距。(1);(2)。