(本小题满分12分)已知函数.(Ⅰ)若直线与函数的图像相切,求实数的值;(Ⅱ)证明曲线与曲线有唯一的公共点;(Ⅲ)设,试比较与的大小.
已知抛物线C的顶点为O(0,0),焦点为F(0,1). (1)求抛物线C的方程; (2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽 m.
如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB. (1)求证:EF∥平面BC1D; (2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.
如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H. (1)求证:PH⊥平面ABC; (2)若a+b=2,求四面体PABC体积的最大值.
如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2). (1)求证:EF⊥A′C; (2)求三棱锥FA′BC的体积.