(本小题满分5分)已知直线经过点M(2,1),且与x轴交于点A,与y轴交于点B.(1)求k的值;(2)求A、B两点的坐标;(3)过点M作直线MP与y轴交于点P,且△MPB的面积为2,求点P的坐标.
(本题12分) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求b,c的值.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形,那么是否存在点P,使四边形为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
(本题10分) 已知一次函数y=的图象与x轴交于点A.与轴交于点;二次函数图象与一次函数y=的图象交于、两点,与轴交于、两点且的坐标为 (1)求二次函数的解析式; (2)在轴上是否存在点P,使得△是直角三角形?若存在,求出所有的点,若不存在,请说明理由。
(本题9分) 厦门市某企业投资112万元引进一条农产品加工生产线,该生产线投产后,从第年到第年的维修、保养费用累计共为(万元),且,若第1年的维修、保养费用为2万元,第2年的维修、保养费用为4万元.(1)求a和b的值; (2)若不计维修、保养费用,预计该生产线投产后每年可创利万元.那么该企业在扣掉投资成本和维修、保险费用后,从第几年开始才可以产生利润?
(本题8分) 关于x的一元二次方程有两实数根、若,求p的值.