求函数y=sin4x+2sin xcos x-cos 4x的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间
已知函数f(x)=sin+-2cos2,x∈R(其中ω>0). (1)求函数f(x)的值域; (2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.
已知△ABC的内角为A、B、C,其对边分别为a、b、c,B为锐角,向量m=(2sin B,-),n=,且m∥n (1)求角B的大小; (2)如果b=2,求S△ABC的最大值.
已知函数f(x)=2sin x(sin x+cos x). (1)求函数f(x)的最小正周期和最大值; (2)在给出的平面直角坐标系中,画出函数y=f(x)在区间上的图象.
已知函数f(x)=ax2-ln x,x∈(0,e],其中e是自然对数的底数,a∈R. (1)当a=1时,求函数f(x)的单调区间与极值; (2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
设函数f(x)=x3-ax2-ax,g(x)=2x2+4x+c. (1)试问函数f(x)能否在x=-1时取得极值?说明理由; (2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.