列方程解应用题(10分) 某单位组织职工旅游.下面是领队向旅行社导游咨询收费标准的一段对话: 领队:组团去“医巫闾山”旅游每人收费是多少? 导游:如果人数不超过25人,人均旅游费用为100元. 领队:超过25人怎样优惠呢? 导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元. 该单位按旅行社的收费标准组团游览“医巫闾山”结束后,共支付给旅行社 2700元. 请你根据上述信息,求该单位这次到“医巫闾山”旅游的共有多少人?
在△ABC中,AD是BC边上的高,∠B=30°,∠C=45°,CD=2.求BC的长.
已知二次函数的图像经过(0,1),(2,1)和(3,4),求该二次函数的解析式.
先化简.再求代数式的值.,其中a=tan60°-2sin30°
已知抛物线与轴交于A、B两点,与轴交于点C,其中点B在轴的正半轴上,点C在轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线. (1)求此抛物线的表达式; (2)连接AC、BC、,若点E是线段AB上的一个动点(与点A、点B不重合),过点E做EF//AC交与点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围; (3)在(2)的基础上说明S是否存在最大值,若存在,请求出S的最大值,并求出此点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上. (1)求; (2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的; (3)把正方形AEFG绕点A旋转一周,在旋转的过程中,存在最大值与最小值,请直接写出最大值,最小值.