已知是半圆的直径, 点在的延长线上运动(点与点不重合), 以为直径的半圆与半圆交于点的平分线与半圆交于点.如图甲, 求证: 是半圆的切线;如图乙, 作于点, 猜想与已有的哪条线段的一半相等, 并加以证明;如图丙, 在上述条件下, 过点作的平行线交于点, 当与半圆相切时, 求甲 乙 的正切值.
如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。 (1)在如图的坐标系中求抛物线的解析式。 (2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶? .
2010年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2011年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量) (1)求2011年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。 (2)该厂要是2001年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
已知二次函数y=x2+bx+c的图像与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标。
某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系). (1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条) (2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.
如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.