如图,已知二次函数的图象与轴交于A、B两点,与轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
如图,直线y=kx+b经过点A(5,0),B(1,4). (1)求直线AB的解析式; (2)若直线y=2x-4与直线AB相交于点C,求点C的坐标; (3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
常用的确定物体位置的方法有两种。如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对于点A的位置.
已知关于x的一次函数y=mx+2的图像经过点(-2,6). (1)求m的值; (2)画出此函数的图像;
解不等式2(1-2x)+5≤3(2-x)
某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克;生产一件B产品需用甲种原料4千克,乙种原料10千克. (1)请你根据要求,设计出A、B两种产品的生产方案; (2)如果生产一件A产品可获利700元,生产一件B产品可获利1200元,那么上述哪种生产方案获得的总利润最大?