下面玩掷骰子放球的游戏:若掷出1点,甲盒中放入一球;若掷出2点或是3点,乙盒中放入一球;若掷出4点或5点或6点,丙盒中放入一球.设掷n次后,甲、乙、丙盒内的球数分别为x,y,z.(1)当n=3时,求x、y、z成等差数列的概率;(2)当n=6时,求x、y、z成等比数列的概率;(3)设掷4次后,甲盒和乙盒中球的个数差的绝对值为ξ,求Eξ.
在直三棱柱ABC—A1B1C1中,AB=AC=AA1=6,BC=4,D是BC的中点,F是C1C上一点,且CF=4。(1)求证:B1F⊥平面ADF;(2)求三棱锥D—AB1F的体积;(3)试在AA1上找一点E,使得BE//平面ADF。
已知双曲线C:的离心率为,左顶点为(-1,0)。(1)求双曲线方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB的中点在圆上,求m的值和线段AB的长。
命题p:实数x满足,其中a<0;命题q:实数x满足或,且是的必要不充分条件,求a的取值范围。
以下茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示。(1)如果X=8,求乙组同学植树棵数的平均数和标准差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率。
某校高二分科分成四个班,某次数学测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班级被抽取了22人,抽取出来的所有学生的测试成绩统计结果的频率分布直方图如图所示,其中测试成绩在90~100分数段(包括90分但不包括100分)的纵坐标为0.005,人数为了5人。(1)求60分以上(包括60分)的人数所占的比例为多少?(2)问各班被抽取的学生人数各为多少?