在直角梯形中,将翻折上去恰好使 (Ⅰ) 求证:;(Ⅱ)已知试求:(1) 四面体ABCD内切球的表面积;(2) 二面角的余弦值.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.(1)建立适当的坐标系,求圆C的圆心的轨迹方程; (2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5)(1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程;(2)若点是外接圆上的动点,求的取值范围.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴比双曲线的半实轴长,离心率之比为2:3。求这两条曲线的方程。
已知中心在原点,焦点在轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段的中点.(1)求椭圆的标准方程;(2)若,求证:直线恒过定点,并求出定点坐标.
已知点直线相交于点M,且.(1)求点的轨迹的方程;(2)过定点作直线与曲线交于两点,的面积是否存在最大值,若存在,求出面积的最大值,若不存在,请说明理由.