如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BFiDE丄平面ABCD,G为EF中点. (1)求证:CF//平面 (2) 求证:平面ASG丄平面CDG; (3)求二面角C—FG—B的余弦值.
选修44:坐标系与参数方程求曲线C1:被直线l:y=x-所截得的线段长.
选修42:矩阵与变换已知点A在变换T:]→]=]的作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.
选修41:几何证明选讲如图,设AB为⊙O的任意一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1) l是⊙O的切线;(2) PB平分∠ABD.
(本小题满分16分)设数列{an}满足:a1=1,a2=2,an+2=(n≥1,n∈N*).(1) 求证:数列是常数列;(2) 求证:当n≥2时,2<a-a≤3;(3) 求a2 011的整数部分.
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2) 求f(x)的单调区间;(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.