如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BFiDE丄平面ABCD,G为EF中点. (1)求证:CF//平面 (2) 求证:平面ASG丄平面CDG; (3)求二面角C—FG—B的余弦值.
如图所示,已知ABCD是正方形,PD⊥平面ABCD, PD=AD=2. (1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE? 若存在,确定E点的位置;若不存在,说明理由.
(12分) 已知函数 (Ⅰ)求函数f(x)的最小正周期和最小值; (Ⅱ)在给出的直角坐标系中, 画出函数上的图象.
.(本小题满分12分) 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D. (I)求AB的长度; (Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分12分)已知函数 (I)当的单调区间和极值; (II)若函数在[1,4]上是减函数,求实数a的取值范围.
椭圆>>与直线交于、两点,且,其中为坐标原点. (1)求的值; (2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围.