(本小题14分)已知函数的图像过点,且在点处的切线方程为,(1)求函数的解析式 ; (2)求函数的单调区间。
在直角坐标系 x O y 中,曲线 C : y = x 2 4 与直线 y = k x + a ( a > 0 ) 交与 M , N 两点, (Ⅰ)当 k = 0 时,分别求 C 在点 M 和 N 处的切线方程; (Ⅱ) y 轴上是否存在点 P ,使得当 k 变动时,总有 ∠ O P M = ∠ O P N ?说明理由.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位: t )和年利润 z (单位:千元)的影响,对近8年的年宣传费 x i 和年销售量 y i ( i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中,= (Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程; (Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
如图,四边形 A B C D 为菱形, ∠ A B C =120°, E , F 是平面 A B C D 同一侧的两点, B E ⊥平面 A B C D , D E ⊥平面 A B C D , B E = 2 D E , A E ⊥ E C .
(Ⅰ)证明:平面 A E C ⊥平面 A F C ; (Ⅱ)求直线 A E 与直线 C F 所成角的余弦值.
S n 为数列 { a n } 的前 n 项和.已知 a n > 0 , a n 2 + 2 a n = 4 S n + 3 . (Ⅰ)求 { a n } 的通项公式; (Ⅱ)设 b n = 1 a n a n - 1 ,求数列 { b n } 的前 n 项和.
已知函数 f ( x ) = 4 x - x 2 , x ∈ R .
(Ⅰ)求 f ( x ) 的单调区间; (Ⅱ)设曲线 y = f ( x ) 与 x 轴正半轴的交点为 P ,曲线在点 P 处的切线方程为 y = g ( x ) ,求证:对于任意的正实数 x ,都有 f ( x ) ≤ g ( x ) ; (Ⅲ)若方程 f ( x ) = a ( a 为实数)有两个正实数根 x 1 , x 2 且 x 1 < x 2 ,求证: x 2 - x 1 < - a 3 + 4 1 3 .