((本小题满分14分)A组.设是等差数列,是各项都为正数的等比数列,且.(1)求数列、的通项公式.(2)求数列的前项和B组.在数列中,已知:.(1)求证:数列是等比数列.(2)求数列的通项公式.(3)求和:.
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (Ⅰ)求该椭圆的标准方程; (Ⅱ)过原点的直线交椭圆于点,求面积的最大值.
已知圆:,直线与圆相交于,两点. (Ⅰ)若直线过点,且,求直线的方程; (Ⅱ)若直线的斜率为,且以弦为直径的圆经过原点,求直线的方程.
如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:平面; (Ⅲ)若,求点到平面的距离.
设有数列{an},a1=,若以a1,a2,a3,……,an中相邻两项为系数的二次方程an-1x2-anx+1=0都有相同的根α、β,且满足3α-αβ+3β=1, (1)求证:{an-}是等比数列; (2)求数列{an}的通项公式; (3)求数列{an}的前5项和S5.
已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为,求这个椭圆的标准方程。