如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。(1)求证:平面;(2)设二面角的平面角为,若,求线段长的取值范围。
如图,中,是的中点,,.将沿折起,使点与图中点重合. (Ⅰ)求证:; (Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
设函数 (Ⅰ)求的最小正周期及值域; (Ⅱ)已知中,角的对边分别为,若,,,求的面积.
(本小题满分7分)选修4—5:不等式选讲 已知为实数,且 (Ⅰ)求证: (Ⅱ)求实数的取值范围.
【改编】(本小题满分7分)选修4-4:极坐标系与参数方程 在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (Ⅰ)求曲线的普通方程与曲线的直角坐标方程; (Ⅱ)设为曲线上的动点,求点到上点的距离的最小值.
(本小题满分7分)选修4—2:矩阵与变换 已知二阶矩阵有特征值λ1=4及属于特征值4的一个特征向量并有特征值及属于特征值-1的一个特征向量, (Ⅰ)求矩阵;(Ⅱ)求.