(12分)已知命题p: ∀x∈[1,2],x3-a≥0. 命题q:∃x0∈R,使得x+(a-1)x0+1<0.若p为假,p且q为假,求实数a的取值范围.
(本题12分)幂函数过点(2,4),求出的解析式并用单调性定义证明在上为增函数。
(本小题12分)如图,、分别是正四棱柱上、下底面的中 心,是的中点,. (Ⅰ)求证:∥平面; (Ⅱ当取何值时,在平面内的射影恰好为的重心?
(本小题满分12分) 如图,在梯形中,∥,,,平面平面,四边形是矩形,,点在线段上.(1)求证:平面BCF⊥平面ACFE;(2)当为何值时,∥平面?证明你的结论;
(本题满分10分) 如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (1)求异面直线AF与BG所成的角的大小; (2)求平面APB与平面CPD所成的锐二面角的余弦值
(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,,(1)求证:AC⊥BF;(2)求点A到平面FBD的距离.