设是关于的一元二次方程若,是分别从,中任取的数字,求方程有实根的概率.若,都是从区间[-1,1]中任取的一个数字,求方程有实根的概率
已知x,y为正实数,满足1≤lg(xy)≤2,3≤lg≤4,求lg(x4y2)的取值范围.
已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
已知函数.(1)求函数的极值;(2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数在上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
已知等差数列的首项为,公差为,数列满足,.(1)求数列与的通项公式;(2)记,求数列的前项和.(注:表示与的最大值.)
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.(1)求证:;(2)在棱上确定一点,使、、、四点共面,并求此时的长;(3)求几何体的体积.