设是定义在上的奇函数,且,又当时,,(1)证明:直线是函数图象的一条对称轴:(2)当时,求的解析式。
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率; (2)3个颜色全相同的概率; (3)3个颜色不全相同的概率; (4)3个颜色全不相同的概率.
从两块玉米地里各抽取10株玉米苗,分别测得它们的株高如下(单位:cm ): 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 根据以上数据回答下面的问题: (1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?
已知抛物线与直线交于两点,,点在抛物线上,.(Ⅰ) 求的值;(Ⅱ) 求点的坐标.
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)函数在上的最大值与最小值的差为,求的表达式.
如图,已知矩形所在平面与等腰直角三角形所在平面互相垂直,,,为线段的中点.(Ⅰ) 证明:;(Ⅱ) 求与平面所成的角的余弦值.