、统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
( (本题满分12分)已知的展开式中,前三项系数的绝对值依次成等差数列.(1)求:展开式中各项系数的和;(2)求展开式中所有有理项.
(本小题满分12分)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。
(本小题满分12分).已知直线l:y=x+m,m∈R。若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(本小题满分12分) 设数列的前项和为,且方程有一根为 (I)求(II)求的通项公式
(本小题满分为14分) 已知抛物线的焦点为F,A、B是热线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。 (I)证明为定值; (II)设的面积为S,写出的表达式,并求S的最小值。