已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程;(2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;(3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
已知圆O:和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足(1) 求实数a、b间满足的等量关系;(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
已知圆,直线,(1)求证:直线与圆恒相交;(2)当时,过圆上点作圆的切线交直线于点,为圆上的动点,求的取值范围;
如图,在三棱锥中,,,为中点,为中点,且为正三角形. (1)求证:平面. (2)求证:平面⊥平面.
已知圆C的半径为,圆心在直线上,且被直线截得的弦长为,求圆C的方程
已知直线经过直线与直线的交点,且垂直于直线.(1)求直线的方程;(2)求直线与两坐标轴围成的三角形的面积.