已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程;(2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;(3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
设向量=,=,其中,,已知函数·的最小正周期为. (Ⅰ)求的值; (Ⅱ)若是关于的方程的根,且,求的值.
记函数的定义域为集合A,函数的定义域为集合B. (Ⅰ)求集合; (Ⅱ)若,求实数的取值范围.
选修:不等式选讲 已知函数,且恒成立. (Ⅰ)求实数的最大值; (Ⅱ)当取最大值时,求不等式的解集.
选修;坐标系与参数方程 在直角坐标系中,直线的参数方程为(为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使. (Ⅰ)求点轨迹的直角坐标方程; (Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.
选修:几何证明选讲 如图,圆内接四边形的边与的延长线交于点,点在的延长线上. (Ⅰ)若,求的值; (Ⅱ)若,证明:.