(本小题12分)已知函数.(Ⅰ)当时,讨论的单调性;(Ⅱ)设当时,若对任意,存在,使,求实数取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.
(本小题满分10分)选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于,垂直于,垂直于,垂直于,连接,.证明:(Ⅰ);(Ⅱ).
(本小题满分12分)已知函数,(其中).(Ⅰ)如果函数和有相同的极值点,求的值,并直接写出函数的单调区间;(Ⅱ)令,讨论函数在区间上零点的个数。
(本小题满分12分)如图,曲线由上半椭圆和部分抛物线 连接而成,的公共点为,其中的离心率为. (Ⅰ)求的值; (Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
(本小题满分12分)如图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.