(本小题满分12分)已知函数,(其中).(Ⅰ)如果函数和有相同的极值点,求的值,并直接写出函数的单调区间;(Ⅱ)令,讨论函数在区间上零点的个数。
“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法. 请用坐标法证明下面问题: 已知圆O的方程是,点,P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是.
已知是等比数列{}的前项和,、、成等差数列. (Ⅰ)求数列{}的公比; (Ⅱ)求证、、成等差数列.
已知椭圆C的两焦点分别为,长轴长为6. (Ⅰ)求椭圆C的标准方程; (Ⅱ)已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度.
在中,内角对边分别为,且. (Ⅰ)求角的大小; (Ⅱ)若,求的值.
已知椭圆的中心为坐标原点O,焦点在轴上,离心离为,点B是椭圆短轴的下端点. B到椭圆一个焦点的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆交于,两点,且,求直线的方程.