.四、附加题(本题10分,记入总分)23.若,且满足,求的最小值.
在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。 ⑴求点的坐标; ⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。 ⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
已知数列,设Sn是数列的前n项和,并且满足a1=1,对任意正整数n, (1)令证明是等比数列,并求的通项公式; (2)令的前n项和,求
若、为双曲线的左右焦点,O为坐标原点,P在双曲线左支,在右准线上,且满足, (1)求双曲线离心率; (2)若双曲线过点N(2,),它的虚轴端点为,(在轴正半轴上)过作直线与双曲线交于A、B两点,当⊥时,求直线的方程。
长度为的线段AB的两个端点A、B在抛物线上运动,求AB中点到轴的最短距离。
如图,在直四棱柱中,底面是梯形,且,,,是棱的中点. (1)求证:; (2)求点到平面的距离; (3)求二面角的大小.