在极坐标系中,已知两点O(0,0),B(2,). (Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程; (Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
(本小题满分12分)已知椭圆:,其通径(过焦点且与x轴垂直的直线被椭圆截得的线段)长. (1)求椭圆的方程; (2)设过椭圆右焦点的直线(不与轴重合)与椭圆交于两点,问在轴上是否存在一点,使为常数?若存在,求点的坐标,若不存在,说明理由.
本小题满分12分)在平行六面体中,,,是的中点. (1)证明:面; (2)若,求直线与平面所成角的正弦值.
(本小题满分12分)某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分.已知甲每次抢到答题权的概率为,且答对的概率为,乙抢到答题权的概率为,且答对的概率为. (1)在一轮抢答中,甲得到0分的概率; (2)若比赛进行两轮,求甲得分的分布列及其期望.
(本小题满分12分)已知的三个内角A、B、C的对边分别为,且的面积. (1)求角B的大小; (2)若,且,求边的取值范围.
(本小题满分13分)已知函数,其中为常数,且. (1)若曲线在点处的切线与直线垂直,求的值; (2)若函数在区间上的最小值为,求的值.