在极坐标系中,已知两点O(0,0),B(2,). (Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程; (Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
(本小题满分13分)如图,四棱锥P—ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1. (1)求证:面PAC⊥面PCD;(2)在棱PD上是否存在一点E,使CE∥面PAB?若存在,请确定E点的位置;若不存在,请说明理由.
(本小题满分13分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请求出上表中的,并直接写出函数的解析式;(Ⅱ)将的图象沿轴向右平移个单位得到函数,若函数在(其中)上的值域为,且此时其图象的最高点和最低点分别为,求与夹角的大小。
(本小题满分13分)若数列满足N*).(1)求的通项公式;(2)等差数列的各项均为正数,其前n项和为,且,又成等比数列,求.
已知函数.(Ⅰ)若在处取得极大值,求实数a的值;(Ⅱ)若,直线都不是曲线的切线,求的取值范围;(Ⅲ)若,求在区间[0,1]上的最大值.
已知椭圆的右焦点为,实轴的长为.(1)求椭圆的标准方程;(2)过点作两条互相垂直的直线分别交椭圆于点和,求的最小值.