(本小题满分12分)投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审.(1)求投到该杂志的1篇稿件被录用的概率.(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数的分布列及期望值.
设等差数列{an}的公差为d,点(an,bn)在函数f (x)=2x的图象上(n∈N*). (Ⅰ)证明:数列{bn}为等比数列; (Ⅱ)若a1=1,直线y=(ln2)(x-a2)+在x轴上的截距为2-,求数列{anb}的前n项和Sn.
设的内角所对的边长分别为,且,. (Ⅰ)求及边长的值; (Ⅱ)若的面积,求的周长.
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且. (Ⅰ)求双曲线的方程; (Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD,AB⊥AD,,O为AD中点. (Ⅰ)求直线与平面所成角的余弦值; (Ⅱ)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
从1到9的九个数字中任取三个偶数四个奇数,问: (Ⅰ)能组成多少个没有重复数字的七位数? (Ⅱ)上述七位数中三个偶数排在一起的概率? (Ⅲ)在(Ⅰ)中任意两偶数都不相邻的概率?