(本题满分12分) 在九江市教研室组织的一次优秀青年教师联谊活动中,有一个有奖竞猜的环节.主持人准备了A、B两个相互独立的问题,并且宣布:幸运观众答对问题A可获奖金1000元,答对问题B可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题A、B的概率分别为、.(1) 记先回答问题A的奖金为随机变量, 则的取值分别是多少?(2) 你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.
已知二次函数.(Ⅰ)若,且在上单调递增,求实数的取值范围;(Ⅱ)当时,有.若对于任意的实数,存在最大的实数,使得当时,恒成立,试求用表示的表达式.
已知等差数列的公差不为零,,等比数列的前3项满足.(Ⅰ)求数列与的通项公式;(Ⅱ)设…,是否存在最大整数,使对任意的,均有总成立?若存在,求出的值;若不存在,请说明理由
已知单位向量夹角为锐角,且最小值为.(Ⅰ)求的值;(Ⅱ)若向量满足,求的最小值.
已知函数,其中.(Ⅰ)求最小正周期及对称轴方程;(Ⅱ)在锐角中,内角的对边分别为,已知,,求边上的高的最大值.
已知,.(Ⅰ)当时,求;(Ⅱ)若,求实数的取值范围.