在△ABC中,已知求:(1)角C的大小;(2)若△ABC最大边的边长为,求△ABC的面积。
已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3.(1)当a=-2时,求函数f(x)的单调区间;(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;(3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.
如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC.(1)求证:E为PC的中点;(2)求二面角A-BD-E的大小.
某工厂2010年第三季度生产的A,B,C,D四种型号的产品产量用条形图形表示如图,现用分层抽样的方法从中选取50件样品参加2011年4月份的一个展销会。(1)A,B,C,D型号的产品各抽取多少件?(2)从50件样品随机地抽取2件,求这2件产品恰好是不同型号产品的概率。(3)从A,C型号的样品中随机地抽取3件,用ξ表示抽取A型号的产品件数,求ξ的分布列和数学期望
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列(1)求角B及边b的最大值;(2)设△ABC的面积为S,求S+最大值
定义:已知函数在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数在[m,n] (m<n)上具有“DK”性质.(1)判断函数在[1,2]上是否具有“DK”性质,说明理由;(2)若在[a,a+1]上具有“DK”性质,求a的取值范围.